Abstract

Editorial

Low Level Light Therapy (LLLT): Penetration and Photobiomodulation

Cecilia Young* and Cheuk Lam Mak

Published: 31 July, 2017 | Volume 2 - Issue 3 | Pages: 080-082

Mester et al., stated the laser effects in a review of their studies of 15 various biological systems, they observed the stimulating effect of low energy (in terms of J/cm2) laser and inhibiting effect of high energy laser and later reported the relationship of cumulative energy applied and the effects conforms to the Arndt-Schultz law. They concluded their experience with 875 healed cases and the results of their experiments had convinced them to recommend the use of lasers to stimulate wound healing [1].

Read Full Article HTML DOI: 10.29328/journal.johcs.1001015 Cite this Article Read Full Article PDF

References

  1. Mester E, Mester AF, Mester A. The biomedical effects of laser application. Lasers in surgery and medicine. 1985; 5: 31-39. Ref.: https://goo.gl/cRAjBy
  2. Suter VGA, Sjölund S, Bornstein MM. Effect of laser on pain relief and wound healing of recurrent aphthous stomatitis: a systematic review. Lasers Med Sci. 2017; 32: 953-963. Ref.: https://goo.gl/dK4NHF
  3. Bjordal JM, Johnson MI, Iversen V, Aimbire F, Lopes-Martins RA. Low-level laser therapy in acute pain: a systematic review of possible mechanisms of action and clinical effects in randomized placebo-controlled trials. Photomed Laser Surg. 2006; 24: 158-168. Ref.: https://goo.gl/DRN456
  4. Ohshiro T, Caldenhead RG. Development of low reactive-level laser therapy and its present status. Journal of clinical laser medicine & surgery. 1991; 9: 267-275. Ref.: https://goo.gl/W9GSnG
  5. Bashkatov A, Genina E, Kochubey V, Tuchin V. Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. Journal of Physics D: Applied Physics. 2005; 38: 2543-2555.
  6. Jacques S. Optical properties of biological tissues: a review. Physics in Medicine and Biology. 2013; 58: 5007-5008. Ref.: https://goo.gl/DfwFGP
  7. Jagdeo JR, Adams LE, Brody NI, Siegel DM. Transcranial Red and Near Infrared Light Transmission in a Cadaveric Model. PLoS One. 2012; 7. Ref.: https://goo.gl/qC1BTq
  8. Tortamano A, Lenzi DC, Haddad AC, Bottino MC, Dominquez GC. Low-level laser therapy for pain caused by placement of the first orthodontic archwire: A randomized clinical trial. Am J Orthod Dentofacial Orthop. 2009; 136: 662-667. Ref.: https://goo.gl/5VDZY3
  9. Angeletti P, Pereira MD, Gomes HC, Hino CT, Ferreira LM. Effect of low-level laser therapy (GaAlAs) on bone regeneration in midpalatal anterior suture after surgically assisted rapid maxillary expansion. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010; 109: 38-46. Ref.: https://goo.gl/Hm7qqB
  10. Abreu ME, Viegas VN, Pagnoncelli RM, de Lima EM, Farret AM, et al. Infrared laser therapy after surgically assisted rapid palatal expansion to diminish pain and accelerate bone healing. World J Orthod. 2010; 11: 273-277. Ref.: https://goo.gl/iyt9aG
  11. Amarillas-Escobar ED, Toranzo-Fernández JM, Martínez-Rider R, Noyola-Frías MA, Hidalgo-Hurtado JA, et al. Use of therapeutic laser after surgical removal of impacted lower third molars. J Oral Maxillofac Surg. 2010; 68: 319-324. Ref: https://goo.gl/FD8qWa
  12. Kan B, Altay MA, Taşar F, Akova M. Low-level laser therapy supported teeth extractions of two patients receiving IV zolendronate. Lasers Med Sci. 2011; 26: 569-575. Ref.: https://goo.gl/wGMQ9H
  13. García-Morales JM, Tortamano-Neto P, Todescan FF, de Andrade JC Jr, Marotti J, et al. Stability of dental implants after irradiation with an 830-nm low-level laser: a double-blind randomized clinical study. Lasers Med Sci. 2012; 27: 703-711. Ref.: https://goo.gl/mLA3cS
  14. Sayed N, Murugavel C, Gnanam A. Management of Temporomandibular Disorders with Low Level Laser Therapy. J Maxillofac Oral Surg. 2014; 13: 444-450. Ref.: https://goo.gl/bq1E56
  15. Prazeres LD, Muniz YV, Barros KM, Gerbi ME, Laureano Filho JR. Effect of infrared laser in the prevention and treatment of paresthesia in orthognathic surgery. J Craniofac Surg. 2013; 24: 708-711. Ref.: https://goo.gl/FpuAcp

Figures:

Figure 1

Figure 1

Similar Articles

Recently Viewed

  • Intradermal and Subcutaneous Lignocaine for Arterial Blood Gas Sampling: A Randomized Controlled Trial
    Charlene Swanevelder, Lila Prasad, Kevin YY Chen, Irene Zeng, Nicola Corna, Anh Nguyen and Conroy Wong* Charlene Swanevelder, Lila Prasad, Kevin YY Chen, Irene Zeng, Nicola Corna, Anh Nguyen, Conroy Wong*. Intradermal and Subcutaneous Lignocaine for Arterial Blood Gas Sampling: A Randomized Controlled Trial. J Pulmonol Respir Res. 2024: doi: 10.29328/journal.jprr.1001054; 8: 023-028
  • Death Wishes, Aging Patients, and Euthanasia
    Mareike Wolf-Fédida, Jelena Rosic, Gilles Arsène Aizan, Fanny Houzé and Laurent Vidal Mareike Wolf-Fédida, Jelena Rosic, Gilles Arsène Aizan, Fanny Houzé, Laurent Vidal. Death Wishes, Aging Patients, and Euthanasia. Insights Depress Anxiety. 2024: doi: 10.29328/journal.ida.1001040; 8: 005-009
  • Why Down-managing Backlog Forensic DNA Case Entries Matters
    JH Smith* and JS Horne JH Smith*, JS Horne. Why Down-managing Backlog Forensic DNA Case Entries Matters. J Forensic Sci Res. 2024: doi: 10.29328/journal.jfsr.1001056; 8: 001-008
  • Effect of TAK242 on MCP-1 and TGF-β in COPD Rats
    Ruicheng Deng, Mingyu Duan, Xiaoyong Ma, Juanxia Chen, Huifang Zhang, Meifang Liu and Jian Chen and Lijun Chen* Ruicheng Deng, Mingyu Duan, Xiaoyong Ma, Juanxia Chen, Huifang Zhang, Meifang Liu, Jian Chen and Lijun Chen*. Effect of TAK242 on MCP-1 and TGF-β in COPD Rats. J Radiol Oncol. 2024: doi: 10.29328/journal.jro.1001060; 8: 014-021
  • A Low-cost High-throughput Targeted Sequencing for the Accurate Detection of Respiratory Tract Pathogen
    Changyan Ju, Chengbosen Zhou, Zhezhi Deng, Jingwei Gao, Weizhao Jiang, Hanbing Zeng, Haiwei Huang, Yongxiang Duan and David X Deng* Changyan Ju, Chengbosen Zhou, Zhezhi Deng, Jingwei Gao, Weizhao Jiang, Hanbing Zeng, Haiwei Huang, Yongxiang Duan, David X Deng*. A Low-cost High-throughput Targeted Sequencing for the Accurate Detection of Respiratory Tract Pathogen. Int J Clin Virol. 2024: doi: 10.29328/journal.ijcv.1001056; 8: 001-007

Read More

Most Viewed

Read More

Help ?